Computer Programming II explores and builds skills in C++ and Java. The study of C++ provides a basic understanding of the fundamentals of procedural program development using structured, modular concepts. Emphasizes logical program design involving user-defined functions and standard structure elements. Discussions will include the role of data types, variables, structures, addressable memory locations, arrays and pointers. Data file access methods are also presented. The development of Java programming skills will provide a basic understanding of the fundamental concepts with an emphasis on logical program design using a modular approach which involves task oriented program functions. Java allows the design of an Internet user interface. The application is built by selecting forms and controls, assigning properties and writing code.

- **DOE Code:** 5236
- **Recommended Grade Level:** Grade 11-12
- **Recommended Prerequisites:** Computer Programming I
- **Credits:** 1-3 credits per semester, maximum of 2 semesters, maximum of 6 credits
- **Counts as a Directed Elective or Elective for the General, Core 40, Core 40 with Academic Honors and Core 40 with Technical Honors diplomas
- **This course is aligned with postsecondary courses for Dual Credit:**
 - Ivy Tech
 - CINS 121 C++ Programming
 - CINS 136 Java Programming
 - Vincennes University
 - TBD

Dual Credit
This course provides the opportunity for dual credit for students who meet postsecondary requirements for earning dual credit and successfully complete the dual credit requirements of this course.

Application of Content and Multiple Hour Offerings
Intensive laboratory applications are a component of this course and may be either school based or work based or a combination of the two. Work-based learning experiences should be in a closely related industry setting. Instructors shall have a standards-based training plan for students participating in work-based learning experiences. When a course is offered for multiple hours per semester, the amount of laboratory application or work-based learning needs to be increased proportionally.

Career and Technical Student Organizations (CTSOs)
Career and Technical Student Organizations are considered a powerful instructional tool when integrated into Career and Technical Education programs. They enhance the knowledge and skills students learn in a course by allowing a student to participate in a unique program of career and leadership development. Students should be encouraged to participate in Business Professional of America, DECA, or Future Business Leaders of America, the CTSOs for this area.

Content Standards

Domain – Task Analysis
Core Standard 1 Students evaluate the tasks a computer program is to perform.

Standards
Differentiate between the different tasks a computer program should perform
Formulate solutions to the different tasks a computer program should perform
Interpret prior solutions. In case prior code and design could be reused

Domain – Problem Analysis

Core Standard 2 Students analyze a problem and develop an advanced solution by creating a computer program.

Standards

CPII-2.1 Recognize and explain how to use a computer program to solve a problem
CPII-2.2 Construct interactive computer programs that accept various forms of input and produce various forms of output, as a solution to an advanced computer programming problem
CPII-2.3 Use print charts, file layouts, program narratives, hierarchy charts, and system flowcharts, which accurately depict the problem assigned and describe the solution
CPII-2.4 Justify what programming methodology to use—object oriented or procedural
CPII-2.5 Appraise the program schematics and usage; document the program and describe its use
CPII-2.6 Recognize and explain the standard program flowchart symbols and use them correctly within the context of the basic control structures of sequence, selection and looping

Domain – Software Tools

Core Standard 3 Students apply and adapt software tools to develop an advanced computer program.

Standards

CPII-3.1 Construct an advanced program that processes information
CPII-3.2 Identify programming languages as procedural and object oriented
CPII-3.3 Recognize and explain class in object oriented programming
CPII-3.4 Recognize and explain object in object oriented programming
CPII-3.5 Recognize and explain method in object oriented programming
CPII-3.6 Recognize and explain instance variable in object oriented programming
CPII-3.7 Recognize and explain polymorphism in object oriented programming
CPII-3.8 Recognize and explain inheritance in object oriented programming
CPII-3.9 Recognize and explain overwriting methods in OOP
CPII-3.10 Recognize and explain encapsulation in computer programming
CPII-3.11 Apply and adapt at an advanced level fundamental programming concepts, including data types, control structures, methods, and arrays
CPII-3.12 Develop advanced programs using reusable modules (modularization)
CPII-3.13 Use advanced debugging techniques to correct and validate the computer program
CPII-3.14 Construct the program in a high-level programming language based on a created design
CPII-3.15 Determine how to integrate a computer program with a web browser
CPII-3.16 Determine how to use a common code/ GUI library
CPII-3.17 Identify controls (push buttons, entry fields, etc.), their properties, methods, and when to use each control

Domain – Algorithms

Core Standard 4 Students design a solution to the problem using algorithms.
Standards

CPII-4.1 Develop advanced algorithms to solve a computer programming problem(s)
CPII-4.2 Apply and adapt math operators in a computer program
CPII-4.3 Prescribe the use of algorithms to provide a solution to a programming problem
CPII-4.4 Use pseudo code to describe a solution to an advanced programming problem
CPII-4.5 Create a program flowchart and ANSI standard flowcharting symbols to define a solution to an advanced programming problem
CPII-4.6 Explain how the algorithm can be used to solve a problem

Domain – Program Development

Core Standard 5 Students create an advanced functional computer program.

Standards

CPII-5.1 Define the process of programming. For example STAIR, Statement, Tools, Algorithm, Implement, and Refine
CPII-5.2 Create an advanced computer program that corresponds to an algorithm or proposed solution
CPII-5.3 Demonstrate programming structures
CPII-5.4 Appraise the use of data variables and constants
CPII-5.5 Appraise the use of local scope and global scope
CPII-5.6 Appraise the use of conditionals (IF statements)
CPII-5.7 Appraise the use of loops (while statements, for statements)
CPII-5.8 Use single and multidimensional Arrays
CPII-5.9 Create programmer defined functions and methods to break down the program logic and support reuse
CPII-5.10 Define the graphical user interface
CPII-5.11 Identify the parts of the programming platform
CPII-5.12 Identify different types of errors and handle them programmatically
CPII-5.13 Use the order of operations when using calculations
CPII-5.14 Construct an advanced computer program using proper condition and loop techniques
CPII-5.15 Use correct naming conventions in variable declarations, function declarations, class declarations, and other. Camel casing

Domain – Program Verification and Debugging

Core Standard 6 Students prove that an advanced computer program solution works by using verification and debugging techniques.

Standards

CPII-6.1 Predict and explain output
CPII-6.2 Identify cause/effect for input/output
CPII-6.3 Perform input validation
CPII-6.4 Scrutinize peers code for errors
CPII-6.5 Show the use of proper internal documentation and coding comments

Domain – Documentation

Core Standard 7 Students connect the associated task with the code by providing documentation.
Standards

CPII-7.1 Describe the function of an advanced computer program
CPII-7.2 Identify the purposes of an advanced computer program
CPII-7.3 Explain concepts related to an advanced computer program
CPII-7.4 Evaluate how to use an advanced computer program
CPII-7.5 Identify cause/effect by explaining input and output related to an advanced computer program
CPII-7.6 Interpret input/output of an advanced computer program

Process Standards

Common Core Literacy Standards for Technical Subjects

Reading Standards for Literacy in Technical Subjects 11-12
The standards below begin at grade 11 and define what students should understand and be able to do by the end of grade 12. The CCR anchor standards and high school standards in literacy work in tandem to define college and career readiness expectations – the former providing broad standards, the latter providing additional specificity.

Key Ideas and Details
11-12.RT.1 Cite specific textual evidence to support analysis of technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account.
11-12.RT.2 Determine the central ideas or conclusions of a text; summarize complex concepts, processes, or information presented in a text by paraphrasing them in simpler but still accurate terms.
11-12.RT.3 Follow precisely a complex multistep procedure when performing technical tasks; analyze the specific results based on explanations in the text.

Craft and Structure
11-12.RT.4 Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific context relevant to grades 11-12 texts and topics.
11-12.RT.5 Analyze how the text structures information or ideas into categories or hierarchies, demonstrating understanding of the information or ideas.
11-12.RT.6 Analyze the author’s purpose in providing an explanation, describing a procedure, or discussing an experiment in a text, identifying important issues that remain unresolved.

Integration of Knowledge and Idea
11-12.RT.7 Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem.
11-12.RT.8 Evaluate the hypotheses, data, analysis, and conclusions in a technical subject, verifying the data when possible and corroborating or challenging conclusions with other sources of information.
11-12.RT.9 Synthesize information from a range of sources (e.g., texts, experiments, simulations) into a coherent understanding of a process, phenomenon, or concept,
resolving conflicting information when possible.

Range of Reading and Level of Text Complexity
11-12.RT.10 By the end of grade 12, read and comprehend technical texts in the grades 11-CCR text complexity band independently and proficiently.

Writing Standards for Literacy in Technical Subjects 11-12
The standards below begin at grade 11 and define what students should understand and be able to do by the end of grade 12. The CCR anchor standards and high school standards in literacy work in tandem to define college and career readiness expectations – the former providing broad standards, the latter providing additional specificity.

Text Types and Purposes
11-12.WT.1 Write arguments focused on discipline-specific content.
11-12.WT.2 Write informative/explanatory texts, including technical processes.
11-12.WT.3 Students will not write narratives in technical subjects. Note: Students’ narrative skills continue to grow in these grades. The Standards require that students be able to incorporate narrative elements effectively into arguments and informative/explanatory texts. In technical, students must be able to write precise enough descriptions of the step-by-step procedures they use in their technical work that others can replicate them and (possibly) reach the same results.

Production and Distribution of Writing
11-12.WT.4 Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.
11-12.WT.5 Develop and strengthen writing as needed by planning, revising, editing, rewriting, or trying a new approach, focusing on addressing what is most significant for a specific purpose and audience.
11-12.WT.6 Use technology, including the Internet, to produce, publish, and update individual or shared writing products in response to ongoing feedback, including new arguments or information.

Research to Build and Present Knowledge
11-12.WT.7 Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation.
11-12.WT.8 Gather relevant information from multiple authoritative print and digital sources, using advanced searches effectively; assess the usefulness of each source in answering the research question; integrate information into the text selectivity to maintain the flow of ideas, avoiding plagiarism and following a standard format for citation.
11-12.WT.9 Draw evidence from informational texts to support analysis, reflection, and research.

Range of Writing
11-12.WT.10 Write routinely over extended time frames (time for reflection and revision) and shorter time frames (a single sitting or a day or two) for a range of discipline-specific tasks, purposes, and audiences.

Career and Technical Student Organizations
Career and Technical Student Organizations are considered a powerful instructional tool when integrated
into Career and Technical Education programs. They enhance the knowledge and skills students learn in a course by allowing a student to participate in a unique program of career and leadership development. Students should be encouraged to participate in a Career and Technical Student Organization, such as Business Professional of America, DECA, or Future Business Leaders of America.